University g) : Deutscher Wetterdienst

of Cologne [ERESFEEE Wetter und Klima aus einer Hand

Neural networks: how to monitor
the learning process

LECTURE 2, 19/12/2023 (1H)

Abstract. We will start with a small recap from the previous lecture and we will
then dig into how to prepare the data, intialize weights and run the network.
We will discuss the batch normalization and will present tips and tricks that
reduce the risks of overfitting and improve the network performance, like
regularization, L2 dropout and data augmentation. We will then introduce one
example, Resnet, which is often used in meteorclogical applications.

Keywords: Preprocessing, weight initialization, batel, normalization, regularization and (2
dropout, lost funchions, data augmanfhl‘inn. Overview of some checks to perform for mnmf:uri.r-g
the LNNM algorithm, ufing one example, Leinel, fine~tuning, transter learning,

Contents:
1. Neural networks
2 How to pre-process your data
3. Weight initialzation
4. Batch normalization
0. Some methods to avoid overfitting:
a, Regutarizahion
b.Max norm constramts
c. Drapolut
6. Manitaring the learning process
{. Hyperparameter optimizatian
8. Transfer Learmng

Credits for the content in this lecture:

Almost all the material from this lecture is a collection of concepls, explanations, Images and
visualizations from other more technical computer engineering lecturas, done with the aim of
extracting and offering to the students of the master program of climate sciences only the
rminimal necessary information to achieve an bagnner lkevel of understanding of maching
learning methods applied to computer vision. We extracted earming material from many
currently avallable resources present on tha wab that we want to fully acknowiedge here. All
what presented here can be found in a more axtended, technical and detailed way in the ariginal
solrces listed hara:
Stanford course on convolutional neural network for computer vision
Articlel and article? of Ketan Doshi on batch normalization

« Arficle on technigues to avoid overfitting by David Chuan-En Li

o Friicle on transfer learning and fine tuning and references therein from Viclor Chaba
We deeply thank all the people that contributed to share this knowledge and make it
available online, so that other people in the world can benefit from it

L 3

This work is licensed under CC BY-NC 4.0 @@@

2.0 Neural networks

Until now, we have been discussing a linear classifier that computes the scores
associated 1o each input image x as s = flx,W) = Wx, with W the matrix of weights. To
build a neural networlk, it s enough to start with this system and introduce a non-knearty.
Cne example could be;

s = Wamaz (0, Wyx)

W1 can be a matrix for of [50x3073] transforming the input image in a vector of
dimension 50, on which then the non-linearity operates elementwise, Then, W2 can be
ancther matrix, of size [10x50] prowviding the final numbers that we interpret as class
scores. Both W1 and W2 can be learned with stochastic gradient descent via
backpropagation. Between the output of W1 and the input of W2, the nonlinearity {not
represented in the figure) operates removing all negative values from the result of Wix.
If, &5 in the example above, the output of a gate (W1x) becomes the input of another gate
(W2], we are dealing with a neural network and gates normally are called reurons. It is
necessary that neurons are connected not in a cyclic form, e the output of W2 cannot
become again the nput of W

In regular networks the newrcns are normally organized in layers, and one of the most
comimon types of layer is the fully connected layer, where neurons of adiacent layers are
connected fully pairwise but there are no connections among neurons of the same layer.

---":‘:}#. bt Sy

1§ U TR
hiddan kepar "
~ \

fully connected layers

Each ol ihe Tuly conrscbied Eyess wWorks in 1S Wiy

T . Immm—

Figure LG 2 lawer fuly corvieched newral rafvark. Figume re-claboralesd bosed oft e fratensl o the facfura

senes of the Stanford Universiy's C523In coursa,

Activation functions. The non-linearity introduced is often called “actrvation function™
These functions take the input number and apply some type of mathematical operations
on it. Various possibilies exist for its functional form [see figure 1.17):

Sigmoid ' Leaky ReLU

N max(D. 1z, x
o(x) = 3= ()

tanh Maxout

tﬂﬂh(i'} ' ' IIIﬂH{H—'rI + by, ur;.r + ba)

ReLU ELU

- =
max(0, x) e r 2l
- 1 aje”—1) =<0

Figure 116; Represaniotion of the mast commenly vsed ackivalion functans, mmage taken fram the lecture
saries of the Stanford Umversity's G523 coursa

It is important to notice that the gradient of the activation function will play a role in
backpropagation, because it will be multiplied by the local gradient. Let's briefly ook at
each of them;

SIGMOID: this function pushes all the input values in the range [0,1], with large
negative values becoming 0 and large positive ones becoming 1. Currently this
function is not very used because it tends to kills the large gradients by making them
very small, and not letting the signal go through. Moreover, its output is not centered
ground zero and this introduces a 2ig-zag behaviour dunng backpropagation
because the gradients will become either all positive or all negative.

TANH: Tanh pushes values between -1 and 1. Also in this case the activation tends to
reduce the gradients and cause saturation, but the output is Zero centered causing
less issues n backprogation

RELW: RELU stands for Rectified Linear Unit and it is one of the most used activation
functions. It returns the maximum between 0 and the input value. Krizhevsky et al
showed that it greatly accelerates convergence and it is a simpler operation
{thresholding) compared to sigmoid/tanh, However, it can happen that it causes an
update in such a way that the gate will never activate again during training. A good
setting of the learming rate can greatly reduce the problem

LEAKYRELU: It i5 a modification of the ReLU attempting to solve the problem of the
dying gates by setting the function for values smaller than zerc not to zero but te a
small positive slope.

MAXOUT: Maxout was introduced by Good{ellow 21 &, and computes the output of
the function

Wf& + Wg'z + bo

RFel U and LeakyRelu are special cases of this function and maxout has all the pros of
the relus and no drawbacks.

Overall, we recommend to use the RelLU and train with attention the learning rate, don't
uwse sigmoid.

MNeural network architectures. A regular rneural network recewves an input and
transforms it through a series of hidden layers made of neurons. Each neuron s fully
connected to the neurons of the previous layer, but it does not share any connection with
the other newrons of his layer. The [ast connected layer is called the output layer and
when the network's goal is to perform a classification, it contains simply the class scores,

EXAMPLE OF 4 J LAYER HEURAL HETWORK Number of layers: 7

O{. 7 : o : Number of neurons: 4 + 4 + |
.'\:-i_ L ol =

rag | i - g, .- -
'__,_‘{ A ’ Mumber of parameters:
Oé" -@‘_ﬂ:a - vl wesghts: [3xd] + [dxd) + [dx1] =12 + ¥ + 4 = 32
gl Iy Blasgs 44 4+ 1« 9

hidcen layer 1 nidden layer 2

[3=4]1 [4x4] [4=1]

in lodal 4] learsable parameters

Figure LIT: Exarnple of a 3 fully connacted neursl nalvwiark, re-alaborafed based on the nofes from ihe

leciure seres of the Stanford Universiby's C523100 cowrse,

A N layer neural network does not include the input layer and its output layer does not
have an activation function (unlike the other layers in the network]. The size of the neural
network is given by the number of neurons in the layers of the network (as said before,
excluding the input layer) or alternatively by the number of parameters. A network with a
single layer can represent any function (see more on this in chapler § of the book "Deep
learning™ from Goodfellow et al) but experience shows that adding more layers get
better performances. For this reason, people built networks with more than just one
layer. Adding more layers gives the capacity to represent more functions, but it makes it
easier to overfil the training data. Generally, larger networks work better than smaller
ones thanks to their higher model capacity, but methods like regularization have 1o be
adopted to deal with the problem of overfitting.

Based on whal we discussed, you can easily foreses that regular neural networks do not
scale well with images. In our example we considered a very small image of
32x32x3-3072 elements. A single fully connected layer for this input would have the size
of 1x3072 and 3072 weights. Howewver, typically images have much larger sizes, like at
least Z00x200x3 = 120000 elements and this number would be a huge number of
weighis to manage for the network, anly in the first hidden layer, and weights will add up
quickly if you add more layers. In the next lecture, we will introduce convolutional neural
netwaorks that can deal better with the image dimensionality.

2.1 Conziderations on the activation functions

In the previous kecture, we saw that activation functions are included in neural networks
for learning complex patterns in the data. These functions take an input from the
previous neurcn and decide, what input can be transmitted to the next neuron and
what needs 1o be killad,

There are two main reasons why we need them in artificial neural networks:

1) They help in keeping the cutput of a neurcn within a certain range we decide based
on our needs, avoiding computational issues caused by numbers growing 1o extremely
large values in the network.

2] They add non-linearity to the netwark. If the model needs to learn non-linear patterns,
like for example in classification tasks, then specific non-linear layers need to be added
1o the network.

We also saw that neural networks are usually trained using gradient descent, via
backpropagation of the gradients with the chain rule, During backpropagation, gradients
gel multiplied with the activation functions. If the activation functions re-scale the input
into a range of values between O and 1, this means that values of the gradients get
strongly reduced. In general, gradients tend to vanish because of the depth of the
network and this problem goes under the name of "vanishing gradient problem”,

2.2 Normalization of the input data

Typically, inputs of neural networks are normalized to zero mean and standard
deviation equal to 1. Why we do this? normalization brings all the features of the input
on the same scale, If we dont do this, what will happen? Imagine that we have in
particula two features having very different scales. Also the weights associated to the
features, since the network output is the knear combination of the feature vectors, will
differ very much in scale, simply not to drown the smallest feature,

if we then look at what happens in the backward propagation, we can see that during
gradient descent, the network will have large updates on the directions with the largest
weights, and much smaller updates on the direction of the smallest feature, resulting in
a gradient that oscillates a lot and needing more steps 0 converge to the minimum , If,
instead the features are normalized, the contributions to the gradient during gradient
descent will be of the same order, generating a more homogeneous descent (Figure
2.1). Mereover, not to make the gradients shift in a particular direction, we need to get
an output of the activation function that is symmetrnical around Zero. In arder for this to
happen, we need some preliminary pre-processing of the input data.

¥ ¥
Figure 21 al Exampie of gradient descent for two un-normakized features and bl gradient descent when the
features wi 2nd w2 arg normalized. The graphics are faken from the wonderful griicte an the baloh

narmalzation from Ketan Doshi

2.3 How to pre-process your data in practice

If we now consider the data matrix of input as [NxD], where each data example is a row,
we can think of 3 main types of pre-processing:

1) Zero-centering. |t is the operation of subtracting the mean from each of the individual
features of the data. It concides with the operation of centering the data around the
origir. With images, it is common to subtract a single mean value from all pixels of the
image (as done in AlexMNet), or to do this operation for each of the RGB channels [as done
in VGGnet).

2] Normalization. This is the process that brings data dimensions all on the same scale,
approximately. It is obtained by first zero-centering the data, and then by dividing each
dimension by its standard deviation, In case of images, this type of pre-processing is not
rezlly needed because pikels scales are relatively equal [in the range 0-2551

3) PCA and whitening. This is another form of pre-processing. Data are centered as
described above, but in this case we then calculate the covariance matrix that will give
information about the correlation structure of the data. The next step is to apply the
singular value decompasition, that is a factonzation of the matrix that allows us to oblain
the eigenvectors and array of singular values. The transformation of data covariance into
the identity matrix corresponds to sgueeze the data in an isotropic bubble (Figure 2.2].
We can then re-project the data on the obtained eigenbasis to decorrelate them and in
this way, we can reduce the dimensionality of the data by selecting only the first
eigenvectors and discarding the other dimensions where data has less or no variance.
This s also called the Principal component analysis dimensionality reduction and with this
operation, we wil obtain a reduced dataset that can sometimes be used for training the
classifier on a reduced datasets. Finally, the last step is the whitening, which means
simply to divide every dimension in the eigenbasis by the eigenvalue and its goal is to
normalize the scale. One drawback of this transformation is that it can greatly amplify
the noise in the data because it stretches all the dimensions lincluding the non relevant
ones, where the varnance is basically only noise) to be equal to the size input. This might
be a preblem when we add small constants (es 10°-5) to prevent divisions by zero values
in the network.

angral daka Fem-cenrreg data M ed diala

] j b

A

' e |]
oeameiaied diola . whilened disda

Figure 22 The pre-professing methocs (figure from the slides of the lectve senes of e Stanford corse
1 CEarrapuer vESO Wl O

Data preprocessing ¢an solve some of the problems mentioned above (the vanishing or
the shift of the gradient) only in the first layer, but the mean will nat be zero for the
subsequent layers. Typically, pre-processing s more efficient and easier 1o do at the
beginning, on the entire dataset, instead of applying it to smaller parts of it {batches).

2.4 Weight initialization

Before starting the training of the neural network, it is necessary to inbialize the weights.
Ore first guess idea that might come nto your mind is to ntialize all the weights 1o zero,
but you would realize that with this choice, the network will not learn because there is no
simmetry breaking: all neurons will do the same thing, and they will all give the same
gradient, so they will be updated in the same way.

Another possibility could be to give as intialization a set of small random numbers, In this
case the simmetry would be broken, but the network might not work for deep
architectures. Figure 2.3 shows the distribution of the activations (inputs to the layers)
and we can see that only the first layer has zero mean and a variance larger that 0.2,
then the subseguent layers inputs display a variance shrinking to Zero and collapsing to
all zeros In the end. All activations become zero, and gradents proportional to the values
of the weights, wil be attenuated.

FigLine 23, Distribution af the activalion funchions whan mifiaizaton & perfonnmed wsing snall ramdom

rmbers. The fmean stays conslanl, bul [he vinance gels soon-allenvaed (o 2efo

We can state the problem in a more general way, that is the following weights are
selected from random distributions and scaled so that the variance of the input and
output layer is maintained constant (MNarkhede &t al, 2021).

Various authors followed this variance scaling based initialization and provided scaling
factors for the variance, so that the vanances in input and output could stay constant.

The first answer 1o such a question came from a paper: Gloret and Bengio acdopted a
walue of the variance v = 1/N, where N 15 the number of nodes feeding into the layer and
assumes that activation functions are linear. This inimalization 5 called “Xavier
initialization" and achieves faster convergence and better accuracy. However, when
used with nonlinear ReL U activation functions, it kills half of the neurons and the variance
gets smoothed (Figure 2.4).

b)

To account for non linearities, He et al. modified the scaling factor from Glorot and Benglo
to v = 2/N, for making it work well with Relu activation functions. This inthalization is
known as "He indtialization”. However, weight initialization is an active field of research
and different approaches can be found in the comprehensive reyiew from Narkhede ot
al, 2021.

2.3 Batch normalization

Batch normahzation became an essential part of deep neural networks because it
speeds Up training and improve accuracy of results.

Batch normalization comes in the network as an additional layer that is usually added to
other blocks of the architecture, like the convolutional or the fully connected layer.

Let's now look at how the batch normalization acts on the network layers. Imagine to
have a network with a senes of hidden layers, Each activation from the previous layar in
such a network becomes the input of the next layer, so for each layer we can identify an
activation {input) coming in and an activation output coming out of the selected layer,
What batch normalization does is to normalize the activations from each previous
layer, so that when the activation becomes the input of the next layer, it is normalized,
We can think of this operation as an additional layer that is put between two hidden
layers, taking the output of the first hidden layer, normalizing it and passing it to the next
hidden layer [Figure 2.5)

Metwork without bateh normalization

i v | 2
Hetwork with batch normalization

o8O

FigLe et EXEmETe af netwark wWithall amnd wiih Batch normalizaiion The baich \ayer narmalzas [he

acivaiions frorm (he previous layer elore ey reach e subsagquent byer.

Let's now see how the batch normalization does the normalization, by first considering
the parameters of the batch normalization layer:

« two learnable parameters (beta and gamma)

» two non-fearnable parameters (mean moving average snd variance moving

average|

Cwring training feedforward phase, we provide as input a mini-batch of data, Le. a subset
of the whole input dataset, for example imagine we take M samples of the N features we
hawve, and for each feature we have an activation vector.

In the layer the operations the batch does to prepare
the output are:

1.calculating the mean and standard deviation of
the activation arrays.

2. narmalization of the activation arrays with the
mean and the standard deviations that have
been calculated

3.scabng and shifting of the normalized activation
arrays with the beta and gamma parameters

In addition 1o these, used to generate the outpul, the
layer also stores a running count of the exponential
maving average of the mean and varnance, oblaining
an EMA at the end of the training, that we will then
use in the inference phase (Figure 2.6)

| M
Skl Bl
1]] g_l |
&
(e 1"II Vi :':_":-l. pal?

A A; —mu
A= ——=

ap
BN, =~-A; + 0

.”mm' — ”ﬂrrim' + [1 L [}']II!

I'.'IL!I"FII!.I‘I'.' - {-}HJH-GT.' + {_1 =3 {.‘}ﬂ‘]

B gt

NORMALIZATION
s Ay — g
. (el
OF SIZE M
mm!-.glh
EApeE of
Teatyres CALCULATING MOVING MEAN
AMND VARIANMCE
M = T e + ” — £l :'I"'.l
r'rrlll."' = "nuhq o I I — [|ﬂ|
Figure 2.5, Representation of the aparations daore in [he balch &

yver. The figure Is based on the figure

presentad e gimcke an Batch normakization xmared froem Ketan Dosh

It is important 1o note that the scaling and shifting is what aliows the batch to shift the
output to a different mean and standard deviation, unlike what can be done with the
input, where all input layers need to have zero mean and unit variance. Moreover, the
parameters beta and gamma are learned in the training process, ike all weights and the
bateh is optimizing them during training to fit the values to those giving the best

predictions.

During inference, after the training, the activations flow in the same architecture. In this
case, in the batch layer, the normalization is done using the two moving average
parameters, that have been calculated and stored during the training. While ideally we
could have calculated and saved the mean and variance for all the data in training, this
operation would have been very expensive. Moving average is a good proxy and it is
more efficient because the calculation is incremental.

Why does batch normalization help in training neural networks? Theare are two main
explanations for this:

1] it reduces the internal covariate shift. The internal covanate shift is the change in the
distribution of networl activations due to the change in network parameters during
training. The problem of covariate shift occurs when the model is trained with data
having a very different distribution with respect to the data which are used for inference.
To work on the new data the model needs to re-learn some of the output target
functions, slowing down the process because each layer tries to learn from a constantly
shifting input, taking longer to converge. Batch normalization stabilizes the shifting input
by optimizing the beta and gamma parameters, thus speeding up the training |see Figure
2.6)

? F'.
L]
L"‘-_
-2
(b) Without BN (c) With BN

Figure 2.6° from e batch cotimiZalion gaper (ioffe and Sregedy, 2015) [a) The tes] acowracy of the MMIET
retwork frarmed wath and without Batch Mormalzation, va the aumber of fraring steps Baich Normakzaion
Faips e relwork ra Faster and achiewve higher accuracy. (B, el The evoiutlon af inpul distrbubons (o a
hmcal -'.|!_,'."l'.|'.l=-".‘_ ovaEr the cowrae of Craurmg, chovean a5 {15 50 -d'i:'..lj'."ll'- percenies, Batoh Marmalzafion makas

the disinbulion more stabie ahd reduces: the infemal covarate shifi

21 It smooths the loss function and the gradient. Batch normalization smoothens the
loss landscape by changing the distnbution of the weights of the networks. In this way,
steps of gradient descent can be larger in a given direction and learning rate can be
higher. If you want to know maore about this aspect, check the paper from Li et al, 2018,

2.4 Methods to avoid overfitting

Owverfitting happens In machine learning algorithms when the model that we develop
performs extremely well on the training data, but fails to generalize to a different, never
seen before, dataset,

Vanous approaches have been presented in literature to try 1o reduce or solve the
problem of overfitting. We already talked about cross-validation, which is indeed a
method to reduce overfitbing. Other methods are:

Data augmentation

Ore very simple idea 1o fight overfitting Is to increase the datasel in Input. In classification
tasks, this can be easily done by manipulating the input iImages using some
transformations like rotation, rescaling or shifting. We saw an example of such
transformations in figure 1.2,

L1/L2 regularization

Regularization is a way to prevent the model from learning a too complex model
Regularization typically penalzes the cost function. Depending on the type of
reqularization, with some peaky weight veclors or by generating sparse weight vectors.
in L1 regularization, we add to the cost function a term

Alwl

which allows all the weights to decay to zero, It penalizes the sum of the absolute values
of the weights, and it is robust to outhers.
L2 regulanzation instead we add the term

1 A
2

which penalizes the sum of the square values of the weights (the peaky weight vectors)
and preferring the diffuse ones, but it 15 less solid to outliers. Usuallt the two normalization
can also be combined in the Elastic net regularzation (Zou and Hastie, 2004}

Max norm constraints

Max norm 15 a constrain that is trying to avoid overfitting by imiting the values of the
weights in the model so that they modulus is less than a fixed threshold. This thresholding
also prevents from obtainng exploding gradients during backpropagation.

Typically, atter parameter update, the vector of weights is forced to satisty

||Ir||f.: <C

Data dropout

T
ay

o

)

] #.'
N

o
e

(m) Stundard Newrnl Net (b} After applving deopont.

Fignare 2.7 Fligure from the paper of Srivastava ef al, on data dragout

With this form of regularization, the idea is to reduce the independent learning units of the
network, diminishing the complexity of the model, by ignoring some sets of neuron units
of the model. It s implemented in the training phase, by keeping a neuron active with a
aiven probability p, and set to zero otherwise, becoming p anather hyperparameter of the
modéel. "Dropout can be mterpreted as sampling a Neural Network within the full Neural
Metwaork, and only updating the parameters of the sampled network based on the input
data .. During testing there is no dropout applied, with the interpretation of evaluating an
averaged prediction across the exponentially-sized ensemble of all sub-networks (more
about ensembles in the next section). © (from the Stanford coyrse CS231n on computer

WESION

2.3 Monitoring the learning process

To monitor the learning process of the network, one should ook at how some
parameters evolves as the epochs of the iterations progress. In particular, It is useful to
plot as a function of epochs:

» the loss function: from the shape of the loss function as a function of the epochs we
can get some information on the correctness of the learning rate value we assigned.
The loss is evaluated during the forward pass of the individual batches. Noise in the
obtained curve might depend on the size of the batch used in input,

isag BoCAREGY g nCEUTELY
.-"--:___.J_'. E ..:—-.,-_u .
,_’.r"{'-- i i
F

VOBZIR0N BOCAIECy. FPOR] DENTiTing

aiech

I |l_.|.||':' A8 Lt Loss o |'I"."ll.-'."|'1§':l"- w?.":'n:.‘?:'l'l:__l h& shapes ihal revaal I'l.|:'_:l'-_ 1o N0 |_|:_'.'-"!|'.I |'|E'-'.|l.'|||:-'_| rate

hicdle:r we can see the notsa in fhe loss funclion when the batch normaization size 15 ow the examole =

frovn the CFARID gataset .'-'F._'_||'l.' [T T 30 vakianon accuracy far the cass of sirong 2md Mie

cvarfitting. The figure crealed by camposig Do figures from the 052830 Stanford courss ih computer

YR

« the training and validation accuracy: these two quantities can give indications on

the amount of overfitting of the model. The two possible behaviours one can obtain
are represented in the figure 2.8.

« ratio of the weights: it is another guantity giving Indications on the learning rate. It is
calculated by taking the ratio of the update values to the magnitude values of the
weights and the reference value indicating a good learning rate is 1.3,

« activation and gradient distributions per each layer: 2 uzeful tool is the
visualization of the distributions of the activations or the gradients at each layer. We
already used this tool for evaluating the impact of the weight initialization we were
using.

» visualization of the first layer: when you work with images, it can be u=seful to
visualze the features (weights) of the first layer. Noisy features could reveal
unconvergence in the network, wrong leaming rate, or low regulanzation penalty (see
Figure 2.9)

Fawre 28 Left nois ¥ Welanis 1oy Hwe firat favear of the neural ehwork, Roht smoadh featiwves thal indicate

=

thae framing = govig fne, from the G523l Standford course i covryouler visian,

2.4 Parameter updates and optimization of the hyperparameter

After compulting the gradients, during backpropagation,
the calculated gradients are used to update the
parameters. There are various ways to update the
parameters starting from the gradients:
« Vanilla update: the update is done along the direction r = r—learning-ratesdr
of the negative gradient, The update, given the
learning rate as hyperparameter, is:
» Momentum update; based on interpreting the loss as
a potential energy function, it sets the initial it = pr— learning-rate =dr
parameters ke to put a particle in an initial position
with zero velocity, Then, if we imagine to apply a
force to the particle, this force is then exactly the
negative gradent of the loss function. In this case the
gradient impacts the velocity, and then the velocity
impacting on the position. There's a new
hyperparameter, that can be associated in the
physical meaning to the role of friction that dampens
the velocity and reduces the kinetic energy of the

T=I+V

system.
« MNesterov momentum: this is an approach similar to Lahend = &+ [%
the one of the momentum update, but here we threat = pr— learning-ratesdr,pead

the future approximate position as a “look ahead”.

« Newton's method: it is a second order method that
iterates an update dependent on the Hessian matrix,
i.e. a matrix of the second order partial derivatives of z - [Hf(z)] 'V fz)
the function. The gradient vector is the same seen in
the gradient descent. With the |local curvature given
by the Hessian, updates are more efficient.

r=r+rv

In addition to the parameter updates, one good practice in machine learning is to anneal
the learming rate over time. You can imagine the learning rate as a sort of level of kinetic
energy available in the system. When it is too high, particles bounces randomly around
and cannot reach the minima. However, we need to be careful on how we make the
learning rate decay, because too slow decay can make the system converge too quickly,
without finding the best position.

There are three common types of implementation for the learning decay, Le. the step
decay, the exponential decay and the 1/1 decay.

Optimization of hyperparameters

In general in a model there are two types of parameters:
= hyperparameters: all the parameters arbitrarily set before starting the traming. They
define how the model is structured in the very beginning.
= model parameters. parameters learned during the traiming {weights in neural
networks, for example). They establish how to use input data for obtaining the output.

We saw the amount of hyperparameters that characterize a neural network. Some of the
st common are the intial learming rate, the decay constant for the learning rate, the
strength of the regularization or of the dropout. We usually want to find the right
cormbination that creates the best model, or, In terms of a loss function, that minimizes
the loss function or maximizes the accuracy.,

Optimization of the hyperparameters can be done with:

» manual search: with this method, we choose sorme values for the hyperparamelers
based on our expenence. then we do the training, we evaluate the accuracy of the
model, and we start again until we get to a decent accuracy.

« random search: Based on a grid of hyperparameters, we follow the same procedure
but we pick the values as randorm combinations of the values of the grid.

« grid search: In this case we test the model on all the possible combinations of the
grid. For choosing which parameters to put in the grid, we can apply first the random
search.

« automated hyperparameter tuning: the parameters are oblaned using ether
Bayesian optimization, Gradient descent or evolutionary algorithms.

= artificial neural network tuning: it is possible ta apply grid search or random search
using deep leaming

For more on this topic, check the article from Fier Paolo Ippolito on Medium.

2.5 Transfer learning and fine tuning

it is quite difficult to have a dataset large enough for training a convolutional neural
network from scratch using randorm initiaization. Transfer learning and fine-tuning are
two popular technigues born to take advantage of the knowledge acquired in pre-existing
models.

Transfer learning: It is a technigue based on:

1. Pretrain a convnet on a large dataset, and load it into memory

2. Aemove the last fully connected layer that would give the class scores for the
different tasks, and then use the rest of the convnet as a feature extractor for a new
dataset. Without the fully connectad layer, from the CNN we would get an array of
4086 features for each input image (called CNN codes).

3. Freeze the parameters of the convnet so as to avoid losing any information they
contam during future traimng rounds.

4, Adding as new layer a linear classifier,

5. Training the new layer on another dataset, smaller, keeping the weights frozen,

Fine-tuning: it is a similar technigque compared to transfer learning, but the difference in
this casze is that when the new training on the new dataset is done, the weights of the
classifier are unfrozen, and we allow them to be updated during this new training. Now,
since these parameters are already guite well tuned, for this second training we can
potentially use a smaller learning rate, for exarmple 1110 of the original value can be a good
starting point. In this way, fine-tuning enables the model to learn task-specific
features but still preserving the general knowledge obtained from the large initial

dataset.

Let's focus on the main differences between the two processas:

« Training approgch: in transfer learning all pre-trained layers are frozen, while in fine
tuning we unfreeze some of them

« Domain similarty: Fine tuning works when the new dataset is quite large and related
to the oniginal one, while transfer learning works when the new task is similar to the
ane the original model was trained on,

» Computational resources: Transfer kearning needs less resources because only the
new layers get trained while for fine wuning the usage of the computational resources
Is guite similar to the oniginal one.

« Trainihg time: Transfer learning needs less training time because it has less
parameters to train compared to fine-tuning

= [Dataset size: transfer learning works for small datasets because it exploits the
knowledge from the large dataset

